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Application of geographic data for spatial modeling of lead in contaminated fluvial soils
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1. Introduction
Contamination of soil with the potentially toxic element of 

lead (Pb) is a global issue due to its worldwide occurrence (Kisku 
et al., 2000; Markus and McBratney, 2001; Zeng et al., 2007; Collin 
et al., 2022). Kabata-Pendias and Pendias (1984) consider the 
average natural content of Pb in soils worldwide to be near 25 mg/
kg. Human activity has contributed to considerable increases in the 
concentration of Pb in soils, especially along roadsides due to the use 
of leaded gasoline by vehicles in the past, near battery recycling sites 
and buildings painted with lead dyes, and mainly in the vicinity of 
lead-zinc ore mines (Mapanda et al., 2005; Maneva and Vatchev, 2013; 
Balkhair and Ashraf, 2016; Kan et al., 2016; Brown, 2016; Laidlaw et al., 
2017; Pan et al., 2018; Milke et al., 2022). Lead tends to accumulate in 
the soil, and once deposited in the past, it can still be a problem today 
for people and the environment (Markus and McBratney, 2001). The 
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The present study aims to determine the spatial distribution of soils with lead (Pb) content 
above the quality thresholds in a section of the Ogosta River valley (NW Bulgaria). The study 
area was contaminated with mine waste from the extraction and flotation of iron, lead-silver, 
and gold-bearing ores in the second half of the XX century. Predictive modeling was performed 
with the software Maximum Entropy Species Distribution Modeling (MaxEnt), Version 3.4.4, 
which uses machine learning algorithms and applies the maximum entropy method. The choice 
of predictors of contaminated soil distribution is consistent with the main factor for Pb dispersal 
within the valley floor - flooding from the Ogosta River. The following six parameters explained 
the environmental settings related to the accumulation of contaminated floodplain sediment: 
vertical distance to the river channel,  lateral distance to the Ogosta River, terrain slope, land 
cover (CORINE Land Cover, 2019), morphographic units of topography, and elevation. The 
results represent the average values of 10 replicates of the model. We evaluated the individual 
models by the value of the area under the relative operating characteristic curve (AUC) and the 
geographic logic of the obtained results. The AUC score for the test samples was 0.666 for the 
soil group 1 with Pb ≤120 mg/kg, 0.782 for group 2 with Pb (120-500] mg/kg, and 0.934 for 
group 3 with Pb>500 mg/kg. The most significant predictors for the models are the vertical and 
lateral distance to the river and the slope of the terrain. Lead concentrations tend to decrease 
with the distance from the main river and by increasing the elevation above the river channel due 
to lower inundation frequency and deposition rate of polluted river sediments. The soils with a 
Pb concentration below the permissible threshold of 120 mg/kg cover more than 58.42% of the 
valley floor of the studied section, and lands with Pb content above the intervention value of 500 
mg/kg occupy nearly 10.82% of the investigated territory. The selected predictors describe the 
distribution of highly contaminated soils well and define the range of soils with lower Pb content 
worse. Combining clean and contaminated soil samples into one group is considered the main 
reason for the poor performance of MaxEnt for soils with Pb ≤120 mg/kg. However, the results 
prove the model's ability to predict the spatial distribution of not only biological species but also 
the dispersal of hazardous substances in soil.
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World Health Organization has listed Pb as one of the ten chemicals of 
highest public health concern (Collin et al., 2022).

According to the US Environmental Protection Agency, lead 
exposure is a health concern, especially for young children and 
pregnant women (EPA, 2020). Lead can affect almost every organ 
and system in the human body. The health effects include damage 
to the nervous system of children, which can cause reduced IQ 
and attention span, hyperactivity, impaired growth, and learning 
disabilities (Markus and McBratney, 2001; Peng et al., 2019). This 
necessitates investigation and quantification of the potential risk 
of lead contamination. Numerous studies have collected data on Pb 
content in natural and contaminated soils at various scales. However, 
only some of these studies have made serious attempts to explain 
the spatial distribution of contaminants by using geographical data 
(Cattle et al., 2002; McGrath et al., 2004; Liu et al., 2006; Qi et al., 2016). 
Creating maps of Pb content in soil can help identify the patterns 
of the spatial distribution of the trace metal. The maps can outline 
pollution hotspots with dangerously high element concentrations 
and are essential for site assessment and subsequent risk assessment 
(Markus and McBratney, 2001). The high cost of chemical analyzes 
and the time required to obtain chemical data at sufficient locations 
to enable mapping are often prohibitive. An alternative to extensive 
sampling is the application of regression and machine-learning 
models to explain the spatial distribution of contaminants in soil. 
Very often, such models are complex to apply and require specific 
knowledge and experience, which limits their widespread use. The 
MaxEnt predictive model features a user-friendly interface and can 

work with a relatively small number of sampling sites. MaxEnt uses 
the maximum entropy method and a machine learning algorithm 
and has been mostly applied to determine the distribution range 
of biological species within a territory (Merow et al., 2013; Glover-
Kapfer, 2015). We do not find in the available literature applications 
of MaxEnt for determining the spatial distribution of soils 
contaminated with hazardous substances, although the model allows 
other applications than species distribution modeling. 

The present study aims to determine the range of soils with 
different levels of lead contamination in the Ogosta River valley 
in NW Bulgaria by applying the MaxEnt predictive model and 
geographical variables as predictors.

2. Study area and research methodology
2.1. Study area

The study area is located in the upper stretch of the Ogosta River 
valley between the villages of Belimel and Gavril Genovo (Figure 1). 
The site covers 571.98 ha with an elevation range between 214.72 
and 294.66 m. Extraction and dressing of iron, lead-silver and gold-
bearing ores took place in the upper reach of the river basin near the 
town of Chiprovtsi from 1951 to 1999. Due to a tailings dam failure 
in 1964 and mine waste discharge into the Ogosta River afterward 
until 1979, the soils in the floodplain of the Ogosta Valley received 
significant amounts of arsenic, lead, and other potentially toxic 
elements (Jordanova et al., 2013).
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2.2. Field and laboratory methods

This study uses data from several sampling campaigns 
conducted in 2010-2020 (Mandaliev et al., 2014; Simmler et al., 
2016; Tcherkezova et al., 2019). The obtained results are compatible 
due to the same soil sampling procedures, sample preparation, and 
measurement methods. 

The sampling considered the morphographic features of the 
floodplain and was complemented with cross-sections semi-
perpendicular to the Ogosta River. The total number of the measured 
soil samples is 168, of which 141 topsoil samples (0-20 cm) were 
collected in 2010-2017 and 27 topsoil samples in 2020. The soil 
material is air-dried, then crushed manually in a porcelain mortar 
and sieved through a <2 mm wire mesh made of stainless steel. 
The soil fraction <2 mm was ground with a planetary ball mill to 
a fine powder. Pellets were then prepared from 4 g soil material and 
0.9 g of an amide wax (N.N′-Bisstearoylethylenediamide, Licowax C, 
Clariant). The Pb and other elements were measured in the pellets by 
X-ray fluorescence spectrometry (XRF).

2.3. Modeling concept

The spatial distribution of Pb content in the soils of the valley 
floor was modeled using the Maximum Entropy Species Distribution 
Modeling (MaxEnt) software, Version 3.4.4 (Phillips et al., 2006). 
The results of MaxEnt were visualized with ESRI ArcGIS 10.6.1 
software product. The MaxEnt model was developed to determine 
the geographic distribution of biological species based on their 
ecological requirements for their surroundings using only presence 
data (Merow et al., 2013; Dai et al., 2022). Like other species 
distribution models, MaxEnt predicts the probability of the presence 
of a given species in a particular territory. This probability is relative 
and is determined by comparing the conditions where the species is 
present to the rest of the studied area (Phillips et al., 2006; Elith et 
al., 2011). The concept of the model allows its usage for establishing 
the spatial distribution of geographical phenomena and objects, 
e.g., soils with specific concentrations of potentially toxic elements. 
For such applications of species distribution models, it is necessary 
to study a sufficiently narrow range of the modeled variable's 
magnitude so that its values correspond to relatively uniform 
environmental conditions. Thus, each group of presence data will 
relate to the environmental settings as an individual biological 
species to its habitat.

2.4. Predictors

The choice of predictors of contaminated soil distribution is 
consistent with the main factor for Pb dispersal within the valley 
floor - flooding from the Ogosta River. The following six parameters 
explained the environmental settings related to the accumulation of 
polluted floodplain sediment: elevation, vertical distance to the river 
channel, lateral distance to the main river, terrain slope, land cover, 
and morphographic units of topography. 

The elevation was determined using a digital terrain model 
(DTM) with a resolution of 1x1 m. It was created from aerial images 
taken in 2019 with a WingtraOne VTOL mapping drone equipped 
with a Sony 42 Mpix (DSC-RX1RM2) camera at a flight altitude of 
400 m and a focal length of approx 35 mm. We used high-precision 
GNSS GPS to measure ground control points and Pix4Dmapper 
photogrammetry software to process the aerial images (Dinkov et 
al., 2020). The raster layer‘s vertical distance to the river channel was 
created using the GRASS GIS implemented in QGIS (Tcherkezova, 
2021). We used the Euclidean Distance tool of Spatial Analyst Tools 
of ArcMap to generate the layer lateral distance to the Ogosta River. 

The terrain slope was calculated from the detailed DTM applying 
Spatial Analyst Tools – Surface – Slope.

The land cover was digitized from the high-quality orthophoto 
mosaics generated from the aerial photos, allowing us to achieve 
significantly higher accuracy than satellite images. Therefore, we 
used CORINE nomenclature for the fourth level, developed for the 
PHARE countries and corresponding to M 1:50 000. Eleven land 
cover classes were identified: Discontinuous built-up areas with 
family houses with gardens; Areas of special installations; Arable 
land prevailingly without dispersed (line and point) vegetation; 
Agricultural areas with a significant share of natural vegetation, 
and with the prevalence of grasslands; Agricultural areas with a 
significant share of natural vegetation, and with the prevalence of 
scattered vegetation; Agricultural areas with a significant share of 
permanent crops, and with the presence of scattered vegetation; 
Agricultural areas with a significant share of permanent crops, 
and with the presence of scattered vegetation; Broad-leaved forests 
with discontinuous canopy, not on the mire; Natural grassland 
prevailingly without trees and shrubs; Natural grassland with trees 
and shrubs; Natural young stands and Fresh-water marshes with 
reeds (Stoyanova, et al., 2020). 

Morphographic units of topography were defined by classifying 
the values of the vertical distance to the main river. The first step 
involved creating an ECD.file with the ArcToolbox tool – Spatial 
Analyst Tools – Segmentation and Classification – Train ISO Cluster 
Classifier. In the second step, the vertical elevation was classified 
using ArcToolbox – Spatial Analyst Tools – Segmentation and 
Classification – Classify Raster. As a result of the classification, four 
primary morphographic levels were outlined on the valley floor at 
approximately 0.2-0.7 m, 1-2 m, 2-3 m, and 4-7 m above the river. 
They correspond to the bankfull channel (0-1 m), active floodplain 
(1-3 m), and high floodplain (3.0-6.5 m), respectively, as defined by 
Tcherkezova (2015). The active floodplain is also referred to as a low 
floodplain in the text below.

2.5. Grouping of Pb values

The samples were divided into three groups according to 
the maximum permissible concentration (120 mg/kg) and the 
intervention value of Pb (500 mg/kg) in the soils of arable and 
grasslands according to Bulgarian Regulation on the permissible 
content of harmful substances in soils (Regulation 3, 2008). The 
number of samples and intervals of Pb for each group were as 
follows [mg/kg]: Group 1 (0-120], 68 samples; Group 2 (120-500], 70 
samples; Group 3 (>500), 30 samples (Figure 1). 

2.6. Model settings

For each group of soil samples, separate modeling was performed 
with MaxEnt using the set of predictors specified above. The results 
represent the average values of 10 replicates of the model. The model 
requires a file containing the coordinates of the samples in .csv 
format (Comma-separated values) and a directory containing the 
environmental variables in ASCII format. The MaxEnt model offers 
four output formats - Gloglog, Logistic, Cumulative, and Raw. We used 
MaxEnt's logistic output type since it is interpreted as the probability 
of the presence of the research object with a value from 0 to 1. The 
software provides Crossvalidate, Bootstrap, and Subsample methods 
for the validation of the model. We selected the bootstrap method 
due to the small number of presence data points in the separate 
groups indicated above. To determine the area occupied by soils with 
the specific content of Pb, we converted the continuous probability of 
the presence of these soils into a map of the suitable and unsuitable 
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areas of their occurrence. We used the logistic threshold of maximum 
test sensitivity plus specificity for the conversion as recommended 
by Jiménez-Valverde & Lobo (2007). At this threshold, calculated by 
MaxEnt, the model maximizes the discrimination of presence data 
from background data.

3. Results
The model's results were evaluated according to the following 

two criteria: the value of the statistical indicator area under the 
relative operating characteristic curve (AUC) and the geographic 
logic of the obtained results. Regarding AUC, there are no generally 
accepted thresholds for evaluation. In this study, we used those 
indicated by Araújo et al. (2005). According to the authors, the model 
can be considered fail if AUC is in the range of 0.5 - 0.6, poor 0.6 - 0.7, 
satisfactory 0.7 - 0.8, good 0.8 - 0.9, and excellent if AUC>0.90 To 
evaluate the model, we used the AUC, which was calculated for the 
test data and referred to as AUCtest in the text below.

By the geographic logic of the results, we understand the absence 
of contradiction between the factors and conditions that control the 
modeled feature and its spatial distribution produced by the model. 
For example, we consider it logical if we find high contaminant levels 
close to the river and low concentrations at the far ends of the valley 
floor. Vice versa would be illogical because the river is the primary 
source of contamination in the valley.

3.1. Group 1 - Probability of presence of soil with a concentration of 
Pb <120 mg/kg 

The concentration of Pb in the collected soil samples from 
group 1 ranges between 19.7 – 117.7 mg/kg with an average of 
54.5 mg/kg, a median of 43.9 mg/kg, a mode of 27.6 mg/kg, and a 
standard deviation of 29.7 mg/kg. The modal value is close to that for 
floodplain sediments in Europe - 18.0 mg/kg (Salminen et al., 2005), 
and the median is in the range of the target values for Bulgarian 
soils, which vary between 40.0 and 50.0 mg/kg depending on the 
soil texture (Regulation 3, 2008). At the same time, the contaminant 
concentration exceeds the percentile 90 for floodplain sediments in 

Europe (62.0 mg/kg) in 35% of the group samples.
The model of group 1 achieved an AUC of 0.774 (Figure 2). 

Validation of the model with the test data reaches an AUCtest value of 
0.666, which defined the model for the first group as poor.

The MaxEnt model provides information on the contribution of 
each of the variables used in its performance. The estimate of the 
contribution, named permutation importance, is calculated based 
on the change in AUC due to randomly permuting the values of the 
variable at the training points. These points include the sampling 
sites and 10 000 pixels randomly selected by the program from the 
predictor layer. The more the AUC decreases after permutation, the 
more significant the impact of the predictor on the model. The spatial 
distribution of Pb concentrations (0-120] mg/kg depended mainly 
on the parameters of slope gradient and vertical distance to the river, 
followed by the lateral distance to the Ogosta River (Table 1). The 
elevation and morphographic units of topography contributed the 
least to the model.

Figure 2. Averaged ROC (relative operating characteristic) curve for the calibrated model of Group 1 

Table 1. Permutation importance of predictors to the model of Group 1

Predictors Code Permutation 
importance 
(%)

Slope slope 28.5

Vertical distance to the river
channel

vdcn 20.1

Lateral distance to the Ogosta 
River

distance 19.7

Land cover clc_2019 14.2

Elevation dtm 9.2

Morphographic units
of topography

gmu 8.3
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The importance of individual variables for model performance 
can also be assessed using the Jackknife test. In this, several versions of 
the model are estimated by successively dropping one of the predictors 
and modeling with the remaining variables. The estimation of these 
models is shown in light blue in Figure 3. In addition, the program 
creates models with each variable separately, which are represented 
by dark blue color. The model with all predictors is indicated by red 
color. The test confirms the highest significance of the slope gradient 
and distance to the river. Both variables explain to the greatest extent 
the distribution of the sampling sites of the group. The smallest 
contribution is revealed for the elevation and the morphology of the 
terrain. Dropping the slope from the model reduces its accuracy most 
significantly. This indicates that the slope parameter caries much 

information which is not contained in the other predictors. At the 
same time, the prediction is only slightly degraded when any other 
variable is dropped. It clearly shows that the rest of the variables 
do not bring a sufficient amount of new information to the model 
compared to the parameter of slope gradient.

The model calculated the value 0.4389 for the logistic threshold of 
maximum test sensitivity plus specificity. The sites with a probability 
higher than the threshold are considered to have Pb ≤120 mg/kg in 
the soil, while the area below the threshold is expected to have higher 
contaminant levels.

The first class of presence probability <0.4389 covers an area of 
233.70 ha, which is 58.42% of the valley floor, while the second class 
>0.4389 includes 166.31 ha or 41.58% (Figure 4). 
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3.2. Group 2 - Probability of presence of soil with a concentration of 
Pb 120-500 mg/kg

The Pb contents of the soil samples of the second group ranged 
from 122.6 to 499.6 mg/kg with a mean value of 254.4 mg/kg, a median 
of 227.0 mg/kg, a mode of 134.6 mg/kg, and a standard deviation of 
100.9 mg/kg.

The model of the second group was characterized by an AUC value 
of 0.829 (Figure 5). Based on AUCtest 0.782, the model for the group was 
evaluated as satisfactory.

The vertical distance to the river channel is the most important 
contributor to the model of group 2, followed by the slope and the lateral 
distance to the Ogosta River, both with a twofold smaller importance 
(Table 2). As in the previous group, the morphographic levels of the 
terrain are of the slightest use for preparing the predictive forecast.

The Jackknife test confirms the leading role of the vertical 
distance to the river channel for the model of Group 2. It relegates 
the lateral distance to the river to second place in the variables' 
contribution to the prediction. The models built with only one of the 

Table 2. Permutation importance of predictors to the model of 
Group 2

Predictors Code Permutation 
importance (%)

Vertical distance to the river 
channel

vdcn 44.7

Slope slope 19.4

Lateral distance to the Ogosta 
River

distance 17.6

Land cover clc_2019 8.5

Elevation dtm 7.4

Morphographic units
of topography

gmu 2.4

vertical or lateral distances have the highest accuracy. In contrast, the 
forecast with only elevation or land cover is wildly inaccurate. Models 
without the participation of slope and vertical distance strongly 
degrade their performance. This fact confirms the informativeness 
of both indicators for environmental conditions typical of soils with 
lead contents of (120-500] mg/kg.

The model defines the value 0.3964 as the logistic threshold of the 
maximum test sensitivity plus specificity. The area with a probability 
of occurrence below the threshold covers 268.37 ha, occupying two-
thirds of the valley floor (67.10%). The suitable territory for the soils 
of Group 2 extends over 131.64 ha and is twice smaller than the 
unsuitable territory (32.91%) (Figure 7).

Figure 5. Averaged ROC (relative operating characteristic) curve for the calibrated model of Group 2

Figure 6. Contribution of individual variables to the model of Group 2
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3.3. Group 3 - Probability of the presence of soil with a concentration 
of Pb >500 mg/kg

The content of Pb in the soil samples of the third group ranged 
from 508.3 to 1550.0 mg/kg with a mean of 784.4 mg/kg, a median 
of 739.6 mg/kg, mode 553.7 mg/kg and a standard deviation of 240.5 
mg/kg.

The AUC value for the model of group 3 is 0.965 (Figure 8) and 
the AUCtest is 0.934, which defines it as excellent.

Vertical distance to the river channel is the essential variable for 
the model (Table 3). The second variable, lateral distance to the river, 
has a fourfold smaller contribution. The permutation importance of 
each of the remaining metrics is a few percent, which determines 
their minor role in the model prediction.

Table 3. Permutation importance of predictors to the model of 
Group 3

Predictors Code Permutation 
importance (%)

Vertical distance to the river channel vdcn 68.7

Slope slope 16.5

Lateral distance to the Ogosta River distance 5.7

Land cover clc_2019 4.4

Elevation dtm 3

Morphographic units of topography gmu 1.8

Figure 9. Contribution of individual variables to the model of Group 3
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The results of the Jackknife test show the best performance of 
the model composed of the vertical distance to the river (Fig. 9). The 
quality of the model that uses only morphographic units is close to 
the accuracy of the model with the vertical distance, followed by 
the individual models with the lateral distance and the land cover. 
The variables with the most unique information are the land cover 
and slope, where the difference between the light blue and red bars 
is the largest. Noteworthy is the minimal degradation of the models 
that drop the lateral distance or the morphographic unit metrics. It 
means that most of the information carried by the two variables is 
also available in the other predictors.

The logistic threshold of maximum test sensitivity plus 
specificity for the soils of Group 3 has a value of 0.2276. The class 
with a presence probability above the threshold covers an area of 
43.27 ha (Figure 10). About 10.82% of the investigated valley floor 
is likely to be covered with soils with Pb >500 mg/kg. The class of 
presence probability below 0.2276 stretches over 356.73 ha (89.18%), 
where highly contaminated soils of group 3 are not expected to occur.

4. Discussion
Most soil samples in Group 1 have Pb content close to natural 

levels, but about one-third of the sampling sites have elevated 
contaminant concentrations. We find low concentrations more 
frequently in the highest morphographic level of the valley floor 
populated with more than 80% of the sites of the group (Table 4). 
The average Pb concentration in these points is 48.42 mg/kg, which 
is close to the target values for soils in Bulgaria (Regulation 3, 2008). 
The rest of the presence data of the group falls predominantly in the 
third morphographic level, and only less than 2% are in the second 

morpho unit.
The mean Pb concentration in the samples from the active 

floodplain is 82.73 mg/kg, which is 71% higher than the average 
value in the high floodplain and exceeds by 33% the percentile 90 
for floodplain sediments in Europe. Contaminant concentrations 
near the natural levels are primarily measured in the highest 
morphographic unit of the valley floor, while elevated contents 
can be found most frequently in the third morphographic level. 
Interviews with local residents reveal the occasional inundation of 
the active floodplain by the Ogosta River since the mid-20th century 
to the present. On the contrary, there is no evidence of flooding of the 
high floodplain except in its lowest sections above the river bed. We 
assume a different origin of Pb content in the soil of the third and 
fourth morphographic units. Aesthetic pedogenesis dominates in 
the higher section and the accumulation of contaminated floodplain 
sediments in the lower areas.

Bringing together uncontaminated and contaminated soil 
samples into one pool increases the heterogeneity of environmental 
settings in the range of the group. Decreased homogeneity is a 
possible reason for the poor explanation of the spatial distribution of 
Pb by the predictors, which is confirmed by the low gain of the model 
for Group 1. Consequently, the model has difficulty distinguishing 
between sites with concentrations below 120 mg/kg from those with 
higher concentrations. It is illustrated by the low AUC and AUCtest 
values for Group 1. However, the model correctly locates the suitable 
area for soils with Pb≤120 mg/kg mainly in the high floodplain 
(82%), and only 12% of it falls in the adjacent lower morphographic 
level.

As with Group 1, the sites of Group 2 fall primarily in the third 
and fourth morphological levels, being almost equally distributed 

Morphographic 
unit

Number of 
samples (N)

Share of the 
total number 
of samples [%]

Average 
concentration 
of Pb in the soil 
samples [mg/kg]

Average 
vertical 
distance to 
the river [m]

Average lateral 
distance to the 
river [m]

Share of the 
suitable area 
for the group 
[%]

Group 1, N=68            
1 0 0.0 - - - 0.0
2 1 1.5 19.7 1.8 22.8 0.0
3 11 16.2 88.5 2.5 75.2 12.0
1+2+3 12 17.7 82.7 2.4 70.8 88.0
4 56 82.4 48.4 6.3 269.9 0.0
Group 2, N=70            
1 0 0.0 - - - 0.1
2 13 18.6 337.7 1.6 29.8 15.2
3 21 30.0 256.8 2.6 69.6 37.2
1+2+3 34 48.6 287.7 2.2 54.4 52.5
4 36 51.4 223.0 4.4 165.7 47.5
Group 3, N=30            
1 0 0.0 - - - 0.2
2 12 40.0 714.8 1.7 13.0 41.0
3 18 60.0 831.7 2.4 39.5 58.8
4 0 0.0 - - - 0.1

Table 4. Lead concentration and main morphographic variables by data presence groups
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between the two morpho units. The average Pb content in the 
lower morphological level is nearly 30% increased compared to 
the higher morpho unit. The difference is twice as slight as for 
Group 1, indicating better uniformity of environmental settings in 
Group 2. It is probably because most sampling points in the fourth 
morphographic unit occupy its lower parts, some of which may 
have been flooded by the river during the mining period. The more 
homogeneous environmental settings within the group expectedly 
resulted in an increased gain of the model and higher AUC and 
AUCtest values for Group 2 compared to Group 1. However, the mixing 
of high and low floodplain locations increases, to a certain extent, the 
range of variable values. Some of the sites of Group 2 can be found 
in river-irrigated orchards and vegetable gardens which are located 
in the higher and more distant parts of the high floodplain, typical 
of Group 1. Including presence data from contaminated irrigated 
lands in the periphery of the valley floor increases the variation of 
the environmental settings within Group 2 additionally.

The presence data of Group 3 fall entirely within the two 
morphological levels of the active floodplain. The difference 
between the mean Pb contents in the soils of the second and 
third morphographic units is only 16%, significantly less than 
the differences revealed above for the high and low floodplains. 
Clearly, the selected predictors best describe the prevalence of sites 
with elevated contaminant concentrations in the low floodplain 
environment. The better homogeneity of the environment settings 
covered by the group is the reason for the model's highest gain and 
AUCtest values compared to Group1 and Group 2.

5. Conclusion
This study applied for the first time the MaxEnt model for 

predictive modeling of the spatial distribution of soils with a 
specific content of potentially toxic elements. The model's results 
were assessed by two criteria: the value of the statistical indicator 
area under the relative operating characteristic curve (AUC) and the 
geographical logic of the obtained results. AUCtest values ranged from 
0.666–0.934 for individual models. 

The results of the study showed the applicability of MaxEnt to 
determine the distribution areas of heavy metals and metalloids 
in alluvial soils contaminated with mine wastes through river 
inundation. Different combinations of the variables explained the 
spatial distribution of soils with varying degrees of contamination. 
Terrain slope, vertical distance to the river channel, and lateral 
distance to the Ogosta River were the most important predictors for 
the distribution of soils with low Pb content. At the same time, highly 
contaminated sites were closely related to the vertical and lateral 
distance to the river. 

The results reveal the main regularities of Pb distribution in 
soils of the valley floor—the concentrations of the element decrease 
by the lateral distance to the Ogosta River and by the elevation above 
the river bed. The inundation frequency and the deposition intensity 
of polluted river sediments control the distribution pattern of Pb. 
Its values >500 mg/kg were usually found in low, frequently flooded 
areas along the river, while contents ≤120 mg/kg could be expected 
mainly in the higher and more peripheral parts of the valley floor.

It can be concluded that the selected predictors describe well 
the distribution of highly contaminated soils and define worse 
the range of soils with lower Pb content. Combining clean and 
contaminated soil samples into one group is the main reason for 
the poor performance of MaxEnt for the soils with Pb ≤120 mg/
kg. However, the results prove the model's ability to predict not only 
the spatial distribution of biological species but also the dispersal of 
hazardous substances in soil.
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